Package com.seeq.model
Class RegressionOutputV1
java.lang.Object
com.seeq.model.RegressionOutputV1
Regression output from the formula result. Note that the `table` will also contain values.
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionadjustedRSquared
(Double adjustedRSquared) boolean
errorSumSquares
(Double errorSumSquares) The measure of how close the data is to the regression line, adjusted for the number of input signals and samplesThe standard error for the sum squaresThe constant offset to add.The standard error for the interceptTrue if this regression is uncertainThe measure of how well the model matches the targetThe measure of how close the data is to the regression lineThe value which the regression method suggests for ignoring coefficientsint
hashCode()
interceptStandardError
(Double interceptStandardError) isUncertain
(Boolean isUncertain) regressionSumSquares
(Double regressionSumSquares) void
setAdjustedRSquared
(Double adjustedRSquared) void
setErrorSumSquares
(Double errorSumSquares) void
setIntercept
(Double intercept) void
setInterceptStandardError
(Double interceptStandardError) void
setIsUncertain
(Boolean isUncertain) void
setRegressionSumSquares
(Double regressionSumSquares) void
setSuggestedPValueCutoff
(Double suggestedPValueCutoff) suggestedPValueCutoff
(Double suggestedPValueCutoff) toString()
-
Constructor Details
-
RegressionOutputV1
public RegressionOutputV1()
-
-
Method Details
-
adjustedRSquared
-
getAdjustedRSquared
The measure of how close the data is to the regression line, adjusted for the number of input signals and samples- Returns:
- adjustedRSquared
-
setAdjustedRSquared
-
errorSumSquares
-
getErrorSumSquares
The standard error for the sum squares- Returns:
- errorSumSquares
-
setErrorSumSquares
-
intercept
-
getIntercept
The constant offset to add. 0 if forceThroughZero was true. This is the intercept for the output signal rather than the individual coefficients.- Returns:
- intercept
-
setIntercept
-
interceptStandardError
-
getInterceptStandardError
The standard error for the intercept- Returns:
- interceptStandardError
-
setInterceptStandardError
-
isUncertain
-
getIsUncertain
True if this regression is uncertain- Returns:
- isUncertain
-
setIsUncertain
-
getRSquared
The measure of how close the data is to the regression line- Returns:
- rSquared
-
regressionSumSquares
-
getRegressionSumSquares
The measure of how well the model matches the target- Returns:
- regressionSumSquares
-
setRegressionSumSquares
-
suggestedPValueCutoff
-
getSuggestedPValueCutoff
The value which the regression method suggests for ignoring coefficients- Returns:
- suggestedPValueCutoff
-
setSuggestedPValueCutoff
-
equals
-
hashCode
public int hashCode() -
toString
-